

Eng. & Arch. Library

3 EXTERNAL REACTIONS

I IN X-, 2 IN Y-, NONCONCURRENT

NO OF JOINTS = 87 8.2 = 13+3 OK

NO REACTIONS = 3 1 16 = 16

MO MEMBERS -

STRUCTURE DETERLINANT STARLE

JOINT METHOD

FIND REACTIONS: EMA-D - RRY - 14. 12 - 21"

EMB-0, RAY = 14. # = 7 }

JOINT C: TOB EF,=0, TEC=14 (1)

JOINT H: TOH H EFX=0, TOH=0 EFX=0, TEH=0

TOF TEH

TOF TE

JOINTF: F TFC EF = 0, TFC OF FG = 0 A

JOINT G: TOP: KG 25,00, Top. B - Toe. 4, Toe. 10 (T) (C)

TOB 25,00, Top. - (Ep. 7 + Toe. 5) - 13 = 13 (C) = Top. (T)

JOINT B: Top. Top. 25,00, Top. + 21 + Top. 12 = 0 Top. - 11. 11. 11. 11. (C) = Top. (E)

3. DECTION METHOD:

Eng. & Arch. Liberry

SECTION 1-1: KNOWING TGH = 0, Tac =0

EMG-0 - FIND TGE

EMG=0 - FIND THE

CHECK EFY=0

SECTION 2-2: KNOWING TOWED, TGE FROM ABOVE EMG=0 - FIND TAB

EFY=0 -> FIND TGO

TECTION 3-3: KNOWING TEG-0, TED=0

EFY-0 - FIND TAD

Eng. & Arch. Littary

American University of Beirut Department of Civil and Environmental Engineering Fall 2005-2006 Instructor: Professor Fouad Kasti

CIVE 210 Statics Exam # 2 Sat Dec 17, 05 1/1

1 / 2 Hour Exam, Closed Books

Problem #1: (25%)

For the one dimensional frame supported at the right end only and shown in the attached sheet:

- 1- Briefly study stability and determinancy (3 points)
- 2- Compute the reactions at the full fixity located at the right end of the frame (4 points)
- 3- Draw to scale the shear diagram on the attached sheet, below the frame system (9 points). Indicate relevant information to key points including slopes, ordinates, location of 0 shear, type of functions, minimum-maximum and other relevant information to key points.
- 4- Draw to scale the moment diagram on the attached sheet, below the frame system (9 points). Indicate relevant information to key points including slopes, ordinates, location of 0 moment, type of functions, minimum-maximum and other relevant information to key points.

American University of Beirut Department of Civil and Environmental Engineering Fall 2005-2006 Instructor: Professor Fouad Kasti

20 kN	35 kN	35 kN		2 kN/m		
•	<u> </u>					
10m		10m		10m	1	0m

				*		
	:					
						•

American University of Beirut Department of Civil and Environmental Engineering Spr 2005-2006 Instructor: Professor Fouad Kasti

CIVE 210 Statics Exam # 2 Fri Apr 5, 06 1/1

3/4 Hour Exam, Closed Books

Problem #1: (25%)

For the one dimensional frame hinge supported at A, roller supported at C, with a concentrated load 50 kN at B, concentrated moment 100 kN-m at E and a 2 kN/m uniform load between C and D as shown in the attached sheet:

1- Briefly study stability and determinancy (3 points)

2- Compute the reactions at the hinge support at A and roller support @ B (4 points)

- 3- Draw to scale the shear diagram on the attached sheet, below the frame system (9 points). Indicate relevant information to key points including slopes, ordinates, location of 0 shear, type of functions, minimum-maximum and other relevant information to key points.
- 4- Draw to scale the moment diagram on the attached sheet, below the frame system (9 points). Indicate relevant information to key points including slopes, ordinates, location of 0 moment, type of functions, minimum-maximum and other relevant information to key points.

American University of Beirut Department of Civil and Environmental Engineering Spr 2005-2006 Instructor: Professor Fouad Kasti

American University of Beirut Department of Civil and Environmental Engineering Spring 2005-2006 Instructor: Professor Fouad Kasti

CIVE 210 Statics Exam # 2 Makeup Mon May 22, 06 1/2

3/4 Hour Exam, Closed Books

Problem #1: (25%)

For the one dimensional frame hinge supported at A, roller supported at C, with a concentrated load 10 kN at D, concentrated counter-clockwise moment 100 kN-m at E and a 2 kN/m uniform load between A and C as shown in the attached sheet:

1- Briefly study stability and determinancy (3 points)

2- Compute the reactions at the hinge support at A and roller support @ B (4 points)

3- Draw to scale the shear diagram on the attached sheet, below the frame system (9 points). Indicate relevant information to key points including slopes, ordinates, location of 0 shear, type of functions, minimum-maximum and other relevant information to key points.

4- Draw to scale the moment diagram on the attached sheet, below the frame system (9 points). Indicate relevant information to key points including slopes, ordinates, location of 0 moment, type of functions, minimum-maximum and other relevant information to key points.

ENG. St. Mach. Library

American University of Beirut Department of Civil and Environmental Engineering Spring 2005-2006 Instructor: Professor Fouad Kasti

